Koi herpesvirus: its potential as a biological control agent for carp in Australia

Ken McColl, Agus Sunarto, Nette Williams and Mark Crane

CSIRO-Australian Animal Health Laboratory
Koi herpesvirus – the disease

• First described outbreaks in Israel in 1998
• Now worldwide distribution
 • Not yet in Australia (exotic disease!)
• High mortality (70-100%) in all age groups of carp
 • Common carp (*Cyprinus carpio carpio*)
 • Koi carp (*C carpio koi*)
 • No other species affected

• Transmission
 • Horizontal – low levels of virus required
 • Vertical - ?
Koi herpesvirus – the disease (cont.)

- **Outcome of infection is temperature-dependent**
 - Max. losses when water temp: 17° – 26°C
 - Most outbreaks in Spring

- **Pathogenesis**
 - Entry site: Skin
 - Systemic infection -> excretion via gills, faeces, urine
 - Death due to loss of function of gills, kidney, gut

- **Re-named ‘Cyprinid herpesvirus-3’ (CyHV-3)**
 - CyHV-1: mortality, “carp pox”
 - CyHV-2: goldfish haematopoietic necrosis virus
Therefore,

- **Specificity** of the virus
- **Sensitivity** of the target species
- **High mortality** in the target species
- Wide **age-range** of affected species

All of these factors suggest that KHV may potentially be a good biological control agent for carp in Australia

- Chose an Indonesian isolate of KHV
Koi herpesvirus – achievements

Introduced a range of technical procedures

- Viral culture systems
 - KF-1 cell line
- Immunohistochemistry / immunocytochemistry
- Molecular detection methods
 - No. of KHV-specific conventional PCRs
 - KHV-specific TaqMan assay
- Electron microscopy
Koi herpesvirus – achievements

• Does KHV kill Australian carp?

 • Australian wild carp are susceptible to KHV
 • Mortality is dose-dependent, and size-dependent
KHV-induced mortality in juvenile carp

Days post challenge

% mortality

- Negative control
- IP (~10 TCID50/fish)
- Bath (0.6 TCID50/mL)
- Bath (6 TCID50/mL)
- Bath (30 TCID50/mL)
KHV – lesions in carp

Gill necrosis

Skin necrosis
Koi herpesvirus – achievements

• Does KHV kill Australian carp?
 • Australian wild carp are susceptible to KHV
 • Mortality is dose-dependent, and size-dependent
Koi herpesvirus – achievements

• Does KHV kill Australian carp?
 • Australian wild carp are susceptible to KHV
 • Mortality is dose-dependent, and size-dependent
 • Larvae
 • Japanese work
 • Juveniles
 • Course of disease is temperature-dependent
 • Very short clinical course
 • High mortality
 • Mature fish (20-30 cm)
 • Lower % mortality?
 • Carp-goldfish hybrids
Koi herpesvirus – achievements

• Susceptibility issues
 1. Carp-goldfish hybrids have lower mortality
 • Serendipitous results
Characterization of fish in a KHV challenge trial

• Fish that **died** following challenge with KHV
 • 5/5 bath-infected mortalities were carp
 • 2/2 IP-inoculated mortalities were carp

• Fish that **survived** following challenge with KHV
 • 3/5 bath-infected survivors were hybrids
 • 7/7 IP-inoculated survivors were hybrids
Koi herpesvirus – achievements

• **Susceptibility issues**
 1. Carp-goldfish hybrids have lower mortality
 • Serendipitous results
 • Conflicting results in the literature
 • Need data on the prevalence of hybrids
 • Collaborate with Paul Brown, Fisheries Victoria
 • Molecular approach using 12S nuclear gene
 2. Survey wild carp for cyprinid herpesviruses
 • Test for viruses cross-reactive with KHV
 • Nursery ‘hot spots’ in the M-D Basin
 • Collaborate with Dean Gilligan, NSW Fisheries
 • Molecular approach using a viral DNA polymerase gene
Koi herpesvirus – achievements

• Does KHV affect native fauna?
 • Tested susceptibility of:
 • Murray cod, golden perch, silver perch (*Bidyanus bidyanus*)
 • Infected by immersion, and by IP inoculation
 • Dose of IP virus: 10^2-10^3 times greater than min. req’d to induce disease in carp
 • Held for 28 days post exposure to KHV
 • Looked for evidence of virus (PCR) and tissue damage (histopathology)
 • Carp used as positive controls

• No evidence of virus replication or disease in non-target species
Koi herpesvirus – future activities

- Epidemiology of KHV infection
 - Aim: understand the spread and persistence of KHV in carp and the environment
 1. Sensitivity to infection
 - Carp extraordinarily sensitive to KHV
 - Useful to have data on precise sensitivity for specific age-groups
 - Targeted release of virus
 2. Excretion of KHV
 - The dynamics/amount of virus produced by an infected carp
 - Completed one trial to supply preliminary information
Koi herpesvirus – future activities

Epidemiology of KHV infection (cont)

3. Survey wild carp for cyprinid herpesviruses
 • Most samples collected
 • Lab analysis ready to begin

4. Estimate the prevalence of hybrid carp in Victorian waters
 • All samples collected
 • Lab analysis has now begun

5. Further non-target species testing
 • Families Galaxiidae, Salmonidae
Teleosts

- Tetraodontiformes
- Pleuronectiformes
- Perciformes
- Scorpaeiformes
- Synbranchiformes
- Gasterosteiformes
- Zeiformes
- Beryciformes
- Stephanoberyciformes
- Cyprinodontiformes
- Beloniformes
- Atheriniformes
- Mugiliformes
- Lophiiformes
- Batrachoidiformes
- Gadiformes
- Ophidiiformes
- Percopsiformes
- Polymixiiformes
- Lampridiformes
- Myctophiformes
- Aulopiformes
- Ateleopodiformes
- Stomiiformes
- Salmoniformes
- Osmeriformes
- Esociformes
- Gymnotiformes
- Siluriformes
- Characiformes
- Cypriniformes
- Gonorrhynchiformes
- Clupeiformes
- Saccopharyngiformes
- Anguilliformes
- Albuliformes
- Elopiformes
- Osteoglossiformes

Murray cod, G perch, S perch

Salmon, trout

Galaxiids
Koi herpesvirus

• Potential as a biological control agent for carp in Australia
 • Early days yet, but........
 • Targeted, strategic release
 • Used in conjunction with other carp control procedures